Best Practice Asset Management In Canada

Overview IAMA February 2020

Asset Management Overview Risk Framework – Lethbridge County Data Structure Working groups to discuss Sturcture Climate Change Data Working groups to discuss climate change data

Asset Management Discipline

The Benefits

Benefits of Asset Management					
	Good governance and increased accountability				
6	Data-driven decision-making				
	Enhanced sustainability of infrastructure				
ķ	Improved level of service and quality of life				
~~~	Accurate forecasting of infrastructure replacement and enhancement needs				
	Compliance with federal and provincial regulations A M A				

INFRASTRUCTURE ASSET MANAGEMENT ALBERT

### It involves:

Processes, procedures and practices to assist and define the management of infrastructure

Achieving total lowest cost of ownership

### Asset Management Program Development & Asset Management Plan

# Where do <u>WE</u> start or should we be considering

#### Policy

#### Team

Maturity + Strategy

#### Data

Life-Cycle Framework Risk Framework Financial Strategies Levels of Service Framework Communication Tools (AMP)

Infrastructure	Status
Region owns and operates roads, bridges, buildings, pipes, t and equipment to support services from Housing Support to er Supply. udes Peel Regional Police managed infrastructure.	Risk Management Rating O Good
Outlook	Condition Grade
r the next 10 years, the Region plans to invest approximately	

BCD

\$2.3 billion to maintain the assets at current conditions and continue to provide high quality Regional services, contributing to a Community for Life in Peel.



#### What do the symbols mean?

flee

Risk Management Rating Key		Condition Grade Key		
•	Very Good	Almost all assets in the portfolio are achieving the desired targets	A	New or like new condition
•	Good	Most assets in the portfolio are achieving the desired targets	в	In a good state of repair
0	Fair	Many assets in the portfolio are not achieving the desired targets	c	Some non-critical defects; some critical repairs in the near term
•	Poor	Most assets in the portfolio are not achieving the desired targets	D	Some critical defects; many critical repairs in the near term
8	Very Poor	Almost all assets in the portfolio are not achieving the desired targets	F	Many critical defects; immediate repair or replacement required

Infrastructure	Status	Asset Value (M)	Condition Grade
Operations Yards, Fleet and Equipment	•	\$91	
Wastewater	0	\$11,780	
Water Supply	•	\$12,353	
Heritage, Arts & Culture		\$29	
Waste		\$147	
Roads and Transportation	•	\$2,145	
TransHelp	•	\$6	
Paramedics	•	\$103	
Long Term Care		\$218	
Housing Support	•	\$289	

#### Asset Management Program Development Assess | Plan | Implement



# Framework

Strategic Asset Management Policy

- Formalizes & institutionalizes AM
- Ensure continuity across different councils



# FRAMEWORK





### Structure

- AM Champion Influential leader
- AM Steering Committee
  - Decision Makers
    - Finance, Engineering, GIS, Facilities, Public Works, Fleet, Planning, etc.
- AM Coordinator
  - Monitors and governs all aspects of the program
- AM Team
  - Dedicated staff meet and discuss the AM Program regularly

### Organizational Overhaul



### Direction

- Asset Management Maturity Assessment
- Systems Maturity Assessment

• Data Maturity Assessment

#### Asset Management Data

- Completeness
- Consistency
- Accuracy
- Integrity
- Uniqueness



Engineering Finance Folk









### Performance & Demand Analysis

#### Challenges

- Aging Infrastructure
- Future Infrastructure Demand
- Lack of Stable & Predictable Grants
- Extreme Weather & Climatic Changes







### **Asset Performance**

**Condition Assessment Program Analysis** 

#### **Type of capture**

Field check or road patrol Condition assessments Detailed studies or reports (RNS)

Cycle of Capture

Type of Index or reporting format.







IAMAA INFRASTRUCTURE ASSET MANAGEMENT AL BERTA

### Asset Management Program Development Assess | Plan | Implement



### Planning for Success!

### Asset Management Strategy

- Provides guidance and a foundational framework
  - Outlines key initiatives that must be taken, along with realistic timelines
  - Outlines AM objectives that align with corporate goals and priorities
    - Addresses each element of asset management, including the Organization, People and Financial Management
  - Applies a corporate lens to asset management
  - Promotes transparency
  - Supports capacity building
  - Entrenches continuous improvement in Asset Management

Every successful plan starts with a strategy





### **Prioritization Planning**

Choosing battles wisely! Sticking to the plan!

- Data Collection & Enrichment Process
- Condition Assessments
- Asset Management Framework
  - Risk Analysis Framework
  - Lifecycle Management
  - Levels of Service





# Data Objective

Silos collaborating!



### **Centralized Municipal Asset** Management Data Model

- Connecting silos rather than break them down
  - Discuss
  - Collaborate
  - Translate & Consolidate
  - Build





### Risk Analysis Framework

What attribute data is available? Which impact will the attribute data contribute to?

- > Probability of failure
  - Condition
  - Deterioration Acceleration
    - Climatic Vulnerability
      - Exposure
      - Sensitivity
      - Adaptive Capacity
    - Infrastructure Demands

#### Consequence of failure

- Economic
- Social

SOFTWARE

CONSULTING

ESEARCH

2

SD

- Environmental
- Operational
- Health and Safety
- Strategic

Triple Bottom Line







Lethbridge County's Bridge Risk Model Development Process



### **Intensive Livestock Operations**





## **Transportation Network**





# **Irrigation Utility**





## 150+ Structural Water Crossings





## Include Another 3300+ Drainage Culverts





## **Current Assessed Condition**





# Current Assessed Condition

- Very Good 2%
  \$1,360,000
- Good 26%
  - \$14,490,000
- Fair 39%
  - \$21,566,000
- Poor 26%
  - \$14,497,000
- Very Poor 7%
  - \$3,800,000





# **10 Year Projected Condition**

- Approximately 7% of all bridges were in very poor condition in comparison to only 2% in very good condition for 2019.
- Over the next 10 years, 29% of bridges are projected to be in very poor condition with no bridges in very good condition.





## **Hydraulic Capacity**





# **Increasing Canal Capacity**





# **Resulting Impacts**





# Mitigation Strategy





# **Economic Impacts**





### **Available Alternative Routes**





# **Disruption to Transportation**





## Strategic Considerations





# **Current Risk**

CityWide Home 0 0 0 0 0 0 Assets 0 Assets 0 Assets 0 Assets 0 Assets 5 -----\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 0 0 0 0 0 0 Assets 2 Assets 1 Asset 1 Asset 0 Assets 4 2.00 unit(s) 1.00 unit(s) 1.00 unit(s) --\$0.00 \$2,354,992.00 \$1,290,000.00 \$4,600,000.00 \$0.00 Consequence 0 0 0 0 Assets 6 Assets 0 8 Assets 0 0 Assets 1 Asset 3 6.00 unit(s) 8.00 unit(s) 1.00 unit(s) -\$0.00 \$4,773,203.00 \$6,560,441.00 \$0.00 \$864,000.00 0 0 0 0 16 Assets 0 1 Asset 14 Assets 6 Assets 2 Assets 2 1.00 unit(s) 14.00 unit(s) 16.00 unit(s) 6.00 unit(s) 2.00 unit(s) \$515,850.00 \$6,750,381.00 \$7,737,977.00 \$2,432,073.00 \$1,000,875.00 0 0 0 0 0 2 Assets 33 Assets 30 Assets 25 Assets 9 Assets 1 2.00 unit(s) 33.00 unit(s) 30.00 unit(s) 25.00 unit(s) 9.00 unit(s) \$635,815.00 \$3,990,720.00 \$1,512,257.00 \$5,769,621.00 \$4,930,299.00 3 5 1 2 4

Probability



# **10 Year Projected Risk**

- 6 bridges at very high risk in 2019
- 18 bridges projected at very high risk in 2029 with no mitigation strategy applied


### Leads to Informed Decision Making

CityWide

Home > AM > Inventory (2018) - Active Inventory and WIP

Asset ID	Name	Import ID	Replacement Cost	Last Condition A	Probability of Failure	Consequence of Failure	Risk Rating	Design Capacity	Estimated AADTS
2918	PICTURE BUTT	B-70758	\$122,647.00	22.2 - Very Poor	4.25 - Likely	1.18 - Insignificant	5 - Low	MEETING CAP	37
2976	LETHBRIDGE	B-79602	\$183,600.00	27.8 - Very Poor	5 - Almost Certain	1.18 - Insignificant	5.88 - Low	UNDER CAP	66
2901	LETHBRIDGE	B-815	\$131,445.00	33.3 - Poor	5 - Almost Certain	1.26 - Insignificant	6.32 - Low	UNDER CAP	91
2904	MONARCH	B-1692	\$238,162.00	33.3 - Poor	4.25 - Likely	1.18 - Insignificant	5 - Low	UNDER CAP	35
2925	PICTURE BUTT	B-71467	\$164,340.00	33.3 - Poor	5 - Almost Certain	1.18 - Insignificant	5.88 - Low	UNDER CAP	43
2928	COALDALE	B-72098	\$115,162.00	33.3 - Poor	5 - Almost Certain	1.35 - Insignificant	6.76 - Low	UNDER CAP	316
2939	COALDALE	B-76411	\$96,075.00	33.3 - Poor	5 - Almost Certain	1.18 - Insignificant	5.88 - Low	UNDER CAP	69
2950	PICTURE BUTT	B-78397	\$229,207.00	33.3 - Poor	4.5 - Likely	1.18 - Insignificant	5.29 - Low	AT CAP	81
2995	COALDALE	B-79770	\$246,450.00	33.3 - Poor	4.25 - Likely	1.09 - Insignificant	4.63 - Low	UNDER CAP	40
2997	COALDALE	B-79773	\$77,062.00	33.3 - Poor	4.25 - Likely	1.18 - Insignificant	5 - Low	MEETING CAP	55
3005	NOBLEFORD	B-79825	\$633,675.00	33.3 - Poor	5 - Almost Certain	2.82 - Minor	14.12 - High	UNDER CAP	193
3066	NOBLEFORD	B-81684	\$864,000.00	33.3 - Poor	4.25 - Likely	3.74 - Moderate	15.88 - High	UNDER CAP	69
2979	LETHBRIDGE	B-79605	\$367,200.00	38.9 - Poor	4.25 - Likely	2 - Minor	8.5 - Moderate	UNDER CAP	128
2907	COALDALE	B-7195	\$211,668.00	44.4 - Poor	4.25 - Likely	1.09 - Insignificant	4.63 - Low	UNDER CAP	49
2937	PICTURE BUTT	B-76077	\$444,690.00	44.4 - Poor	4.25 - Likely	2 - Minor	8.5 - Moderate	UNDER CAP	101



### Lifecycle Strategies Framework

- Understand the complexity and diversity of infrastructure and asset portfolios
- Understanding demand & performance needs
  - Paved Road Composition
    - HCB HL4 50mm
    - HCB HL8 75mm
    - HCB Superpave 100mm
  - ICB
  - LCB
  - Surface Treated
  - Gravel Roads
    - Typical Design
    - Base Stabilized
  - Candidates for Structural Upgrades
    - E.G. LCB conversion to HCB HL4 100mm







### **Climatic Adaptation Considerations**

Understanding which assets are vulnerable to climatic impacts.

- Heavy rainfall
- Excessive spring runoff
- Extreme heat & drought
- High winds
- Rising sea levels
- Extreme weather events



### **Defining Treatment Options**

Event Class	Description	Example	Cost
General Maintenance	Any activities that repair current defects or deteriorations	(Roads) Pothole Repairs	\$
Preventative Maintenance	Any activities that prevent defects or deteriorations from occurring	(Roads) Crack Seal	\$
Rehabilitation	Any activities that rectify defects or deficiencies that are already present and may be affecting asset performance	(Roads) Mill & Resurface	<b>\$\$</b>
Replacement	Asset end-of-life activities that often involve the complete replacement of assets	(Roads) Full Reconstruction	\$\$\$
Replacement Upgrade	Asset end-of-life activities that involve the complete replacement of assets with an upgraded asset	(Roads) Reconstruct from LCB to HCB surface composition	\$\$\$\$

'▲ \

INFRASTRUCTURE ASSET MANAGEMENT ALBERTA

### Asset Management Program Development Assess | Plan | Implement



### Implementation

### Final Steps:

#### **Establishing Benchmarks**:

Levels of Service

#### **Developing Financial Strategy:**

- Cost Quantification
- Full Life Cycle cost of Ownership and disposal
- Multiple Budget Scenarios
- Formal Documentation
- Communication Strategy
- Execute:
  - Asset Management Plan

# **AMP 2018**



2018 Asset Management Plan for the Town of Huntsville

### Cost Level of Service Performance





### What are Levels of Service?

A measure of the service

outcomes that the

community receives

### LOS Framework Components





### Level of Service Framework





ш

# BUILDING A STRATEGY FOR BETTER ASSET DATA



# The Challenge

- Data, Data, and More Data
- Multiple datasets owned and maintained by various departments including Finance, Engineering, GIS, spreadsheets
- Legacy Processes
- Bringing Value and Purpose to Data
- Data Confidence Validating the quality of data
- Managing data and determining what data brings value to your organization





# **Additional Considerations**

- What data do we have and what are we missing?
- What is the business need? Who uses the data and is there value to creating and maintaining it?
- What is the process for gathering the data?
- Is the process for gathering data aligned with operational workflows?



# Data Confidence

- Not a quick process...it is dynamic and continuous (AM for your data)
- Objective is to have accurate, reliable, and timely information that supports both operations and strategic initiatives
- Data Completeness
- Data Integrity
- Data Accuracy



# Step 1: Objective



# Data Objective

Silos collaborating!







### **Centralized Municipal Asset** Management Data Model

- Connecting silos rather than break them down
  - Discuss
  - Collaborate
  - Translate & Consolidate
  - Build



# Step 2: Understanding Organizational Business Needs



## Understanding the Purpose





# **Identifying Functional Needs**



### SUPPORTS THE PURPOSE







# Supporting Dynamic Data



# Step 3: Database Hierarchy



# A Top-Down Approach







### Data Hierarchy – Level 1









Data Hierarchy – Level 3



### Data Hierarchy – Level 3



# Municipal Asset Management Data Model





### The Backbone to Asset Management!



Without it, you're only 50% complete in everything!



# Step 4: Assess



# <u>Assess – Gap Analysis</u>

- Gap Analysis (Understand what you have and what you don't)
- What are the Authoritative Data Sources (Systems, Excel, GIS)
- Create a Data Roadmap
  - What to Collect (Critical vs. Nice to Have)
  - How to Structure your Data (Standards UNIFORMAT II, ISO 55000, IIMM)
  - Create a Data Catalogue for each Asset Type. This will allow you to fill the data gaps
  - Develop a Data Collection Timeline





# Step 5: Formal Documentation



# Documentation

### Storm Sewer System Database Structure

The following is a recommendation of how storm system linear and point feature assets can be defined within CityWide AM inventory.

#### **Category**

• Storm Sewer System

#### **Segments**

- Main
- Catch Basin/Inlet
- Culvert
- Manhole
- Oil Grit Separator
- Outfall
- Water Lift Station
- Storm Water Management Pond
- Swale
- Valve
- Vault



#### **Segment Details**

#### Main (STMN)

- Name = Main Type
  - > Trunk
  - Lateral or Lead
- Location = Street Name
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STMN123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = Additional attributes (E.g. Supplier, Material, Diameter, Length, Manhole To, Manhole From, Rd Seg ID, etc.)

#### Catch Basin/Inlet (CB)

- Name = Inlet Type
  - > Apron
  - Curb
  - Ditch
  - > Drop
  - ➢ Flanking
  - Slotted
- Location = Street Name
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. CB123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. Supplier, Material, Dimensions, Rd Seg ID, etc.)



#### **Culvert (CLV)**

- Name = Culvert Type
  - > Arch
  - > Box
  - > Bridge
  - Circular
  - > Elliptical
- **Location** = GPS Coordinates, street name, civic address, water feature name, etc.
- Import ID = Unique GIS ID (Alphanumeric preferred. E.g. CLV123)
- **Description** = Material
  - Concrete (CON)
  - Corrugated Metal Pipe (CMP)
  - DuroMaxx (DM)
  - High Density Polyethylene (HDPE)
  - Smooth Steel (STL)

**User defined attributes** = additional attributes (E.g. Supplier, Diameter, Length (m), Manufacturer, Rd Seg ID, etc.)



#### Manhole (STMH)

- Name = Manhole Type
  - Shallow
  - Normal
  - ➢ Deep
- Location = Street Name
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STMH123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = Additional attributes (E.g. Supplier, Material, Diameter, Invert Depth, Line in, Line out, Rd Seg ID, etc.)

#### Outfall (STO)

- Name = Outfall type
  - > Ditch
  - > Pipe
- Location = GPS Coordinates, street name, civic address, water feature name, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STO123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. Supplier, Material, Shape, Dimensions, Line in, Rd Seg ID, etc.)

#### Oil Grit Separator (OGS)

- Name = Separator name or type
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. OGS123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. Supplier, Material, dimensions, Rd Seg ID, etc.)



ш

#### Lift Station (STLS)

- Name = Lift Station Name
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STLS123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. dimensions, particulars, etc.)

#### Storm Water Management Pond (SWMP)

- Name = SWMP Type
  - Dry Pond (Detention Basin)
  - Wet Pond (Retention Basin)
  - Natural (Marsh or Fen)
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. SWMP123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. Volume, dimensions, particulars, etc.)

#### Swale (STSW)

- Name = Swale Type
  - > Dry
  - > Wet
  - Vegetation
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STSW123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = additional attributes (E.g. Material, length, width, etc.)

#### Valve (STV)

- Name = Valve Name or Type
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique or GIS ID (Alphanumeric preferred. E.g. STV123)
- **Description** = Town, Hamlet, Subdivision, System, etc.
- User defined attributes = Additional attributes (E.g. Supplier, Material, Diameter, Rd Seg ID, etc.)

#### Vault (STVLT)

- Name = Vault Name or Type
- Location = GPS Coordinates, street name, civic address, etc.
- Import ID = Unique GIS ID (Alphanumeric preferred. E.g. WVLT123)
- **Description** = Vault Description
- User defined attributes = additional attributes (E.g. Type, Purpose, etc.)



Δ.

RE
# Step 6: Implement



# Data Governance

- DATA POLICY
  - The purpose of this policy is to ensure the consistency, integrity and continuity of the municipality's asset database inventory. It should also include defined roles and responsibilities to facilitate a standardized, structured approach to database management.
  - Individuals of groups involved
  - Principles
  - Alignment to the organizational objectives







# Climate Change and Asset Management

Integrating Climate Change Adaptation and Asset Management Practices



# Climate Change Adaptation and Asset Management

- Canada's temperature increase is double the global average
- Canadian infrastructure is in poor health
- Shared goal of sustainable service delivery
- Holistic approach to risk management



### Infrastructure & Assets Affected By Climate Change

- Roads
- Bridges
- Water
- Wastewater
- Stormwater
- Water
- Parks and Natural Capital
- Buildings



# **Climate Adaptation**





### **UKCIP Adaptation Wizard – Oxford University**

# Step 1 – Getting Started

### **The AM Policy**

- The Problem / issue that needs to be addressed
  - Include the organization's commitment to integrating climate change
- The Players the individuals and/or groups involved
  - Council, Finance, Public Works (include Sustainability / Environmental staff)
- A course of action and/or principles
  - Include the Integration of climate change adaptation
- Alignment to organizational objectives and goals
  - Include reference to other plans / policies / council directives with climate change considerations (Strat Plan, Official Plan, etc)





# Step 2 – Assess Vulnerability to Current Climate Change

 'the nature and degree to which a system is exposed to significant climate variations.'



### Vulnerability

 'the degree to which a system is susceptible, and unable to cope with, adverse effects of climate change, including climate variability and extremes.'



# Step 3 – Assess Vulnerability to **Future Climate** Change

#### **Maximum 1-Day Total Precipitation**

Click and drag in the plot area to zoom in

HISTORICAL — RCP 2.6 MEDIAN — RCP 4.5 MEDIAN — RCP 8.5 MEDIAN



Maximum 1-Day Total Precipitation

Highcharts.com

### Lethbridge **Precipitation Data** climatechangedata.ca



# Step 4 – Identify, Assess, & Implement Adaptation Options

### AM – Life Cycle Activity Models - (Total Cost of Ownership)

#### **Due to Climate Variability and Extreme Events:**

- The estimated useful life span of assets may need to be reduced
- The interval between treatments may have to change
- The types of materials used in treatments may change
- New technologies may need to be introduced
- Some assets will need premature replacement and upgrading
- All of the above will effect the Life Cycle Model & Total Cost of Ownership



## Step 5 – Monitor & Review

### **Levels of Service Frameworks**





# Local Network

A Roundtable for Local Leaders on Climate Change Adaptation



"Sometimes you don't have the money and the resources to develop a solution, so the best option is to build an informal network, just as we have created here today."

 Dr. Peter Walton, Knowledge Exchange Research Fellow, University of Oxford

