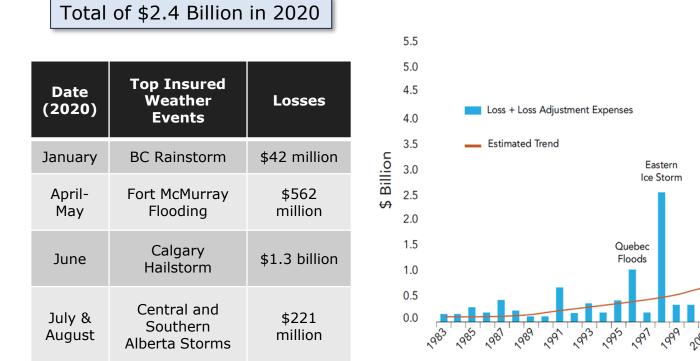
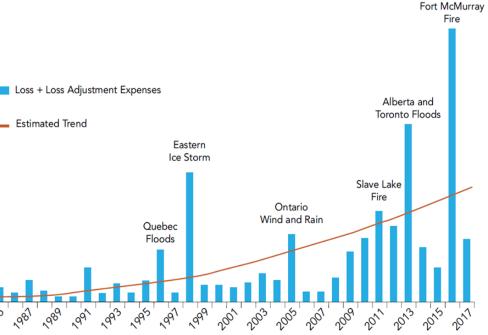
Aligning Asset Management with Climate Change Adaptation

John Murray, General Manager of Asset Management

Agenda

- Climate / Weather Impacts Across Canada
- Aligning Asset Management with Climate Adaptation
- Developing an A.M. Program with In-Built Climate Considerations
 - Assess
 - Plan
 - Implement
- Benefits of Asset Management


Sustainable service delivery is the key objective of asset management, and climate change poses a threat to the sustainable delivery of services.


Climate Change – The Canadian Experience

- Canada warming twice as much as the rest of the world
- An extreme once in 20 years event projected to become once in
 5 year event by late century under the high emission scenario
- Once in 50 years event projected to occur once in 10 years by late century under a high emission scenario
- Precipitation levels have increased 20% since 1948

Climate Change & Insured Damage

Temperature Increase (1948-2016) 1.9°C Projected Temperature increase by 2100 5.2°C Western Precipitation Change (1948-2012) 5% (-9% in winter) Canada Projected Precipitation Change by 2100 13.8% Likely to Occur Extreme Events Drought, Wildfires, Flooding, Coastal erosion Heavy winds

Annual Mean

Climate Change

Aligning A.M. with Climate Change Adaptation

Assessing

Planning

Implementation

Planning for sustainable communities

Asset Management Plans

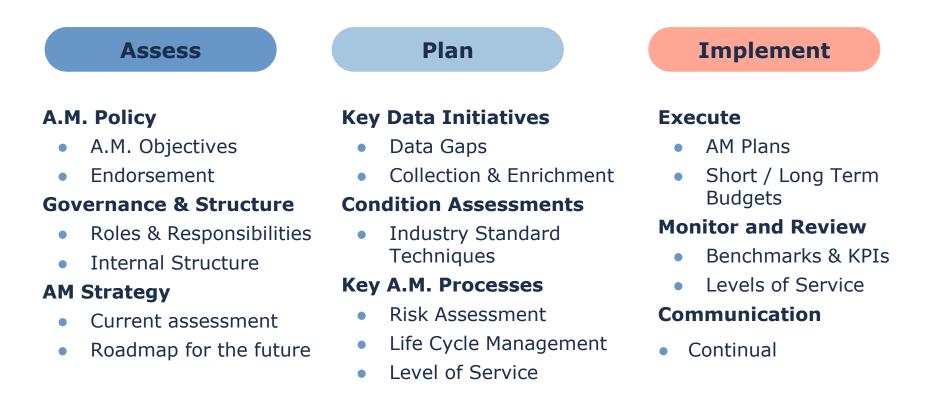
- Assess the management of an organization's infrastructure to an agreed level of service
- Identify needs and prioritize projects using risk and criticality models, and cost / benefit analysis
- Implement, Monitor and Review

Climate Change Risk & Adaptation Plans

- Assess vulnerability of social and biological systems to current / future climate change
- Identify needs and adaptation options using risk and criticality models, and cost / benefit analysis
- Implement, Monitor and Review

Types of Climate Change Adaptation Plan

- Community Plan
 - Health / Energy / Food Security / Agriculture
- Corporate Plan
 - Health / Community Services / Public Works
- Individual Sector Specific Plan
 - Health / Agriculture / **Infrastructure**



Plan vs. Program

- An adaptation plan is a great start
- However, a Plan typically has finite timelines aimed at a specific goal or outcome
- A program will instead achieve a set of enduring behaviours and practices that continue, into the future
- Asset Management as a discipline provides the perfect framework for an adaptation program

Typical Asset Management Roadmap

Asset Management Policy

- The Problem / issue that needs to be addressed
- The Players the individuals and/or groups involved
 - Council, Finance, Public Works
- A course of action and/or principles
- Alignment to organizational objectives and goals

Include the organization's commitment to integrating climate change

Include Sustainability and/or Environmental staff

Include reference to other plans or policies, and board, executive, or council directives with climate change considerations

Developing the Asset Management Strategy

Key Components to Review and Action

(include the climate lens)

Asset Data and Information

- Is data centralized or siloed
- Analyze database structures, hierarchies, and industry standardization
- Analyze consistency, completeness & currency
- Analyze costing and valuation data
- Data sharing and associated processes
- What data gap exists (e.g. condition data)
- Analyze data governance & maintenance processes

Historical Climate Data

- Average temperatures
- Precipitation levels
- Water levels (i.e., ocean, lake, and river levels)

Extreme Event Analysis

- Past Extreme Events (e.g., flooding, fires, storms)
- Documented geographical impacts
- Documented impacts on infrastructure types
- Overall event costs

Future Climate Data

- Projected temperatures
- Projected precipitation levels
- Water levels (i.e., ocean, lake, and river levels)
- Likely Reoccurrence of Events and Extreme Events

Include an Inventory of Natural & Green Infrastructure

What?

• Wetlands / Forests / Aquifers / Parks / Lakes / Rivers /

Streams, Urban Trees, etc

Why?

- Provide vital services equivalent to engineered assets
- Often more resilient and adaptable to climate change
- Ultimately can save operating and capital dollars

Condition Assessment Data

Condition Assessment Program Analysis

- Type of capture
 - Field check or road patrol
 - Industry Standard Assessments
 - Detailed studies or reports (RNS)
- Cycle of Capture
- Type of Index or reporting format

AM – The Collection of Asset Performance Data Incorporating Climate Change Considerations

- No longer just Asset Condition data
- What about Information regarding Exposure,
 Vulnerability and Resilience to Climate Change
- Other Functional & Capacity related data

Risk Management

- Use Risk Management processes to prioritize infrastructure projects and programs
- Definition (ISO 31000):
 - "The effect of uncertainty on objectives"

Probability vs Consequence

Probability of Failure

- Consumed life
- Condition
 - Age Based
 - Internal Cursory Approach
 - Internal Intermediate Approach
 - Comprehensive Study or Structural Assessment
- Other Contributors to Failure
 - AADT
 - Commercial Traffic
 - Sub Terrain Base

- Operational
- Health & Safety
- Strategic

Climate Risk Assessment Approach

A typical risk assessment approach takes account of four major conceptual factors in assessing climate change impact and adaptation:

Exposure

• 'the nature and degree to which a **system** is exposed to significant climate variations.'

Vulnerability

• 'the degree to which a **system** is susceptible, and unable to cope with, adverse effects of climate change, including climate variability and extremes.'

Resilience

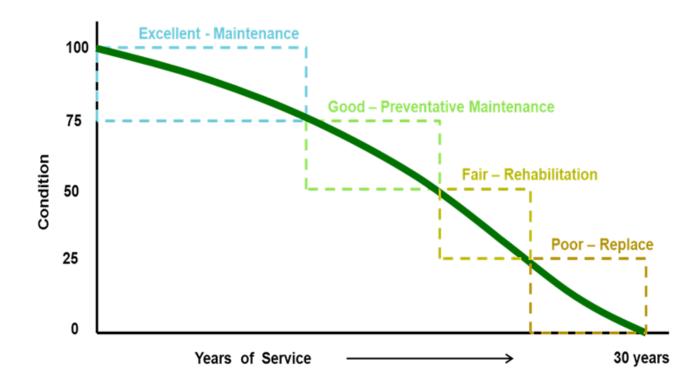
• 'the capacity of a **system** to absorb disturbance without losing essential function.'

Adaptation

 `adjustments in a system, in response to actual or expected climatic variations, to better cope with adverse consequences.'

Incorporating Climate Change Considerations

Risk = Probability of Failure **X** Consequence of Failure


Exposure & Vulnerability Resilience & Adaptation

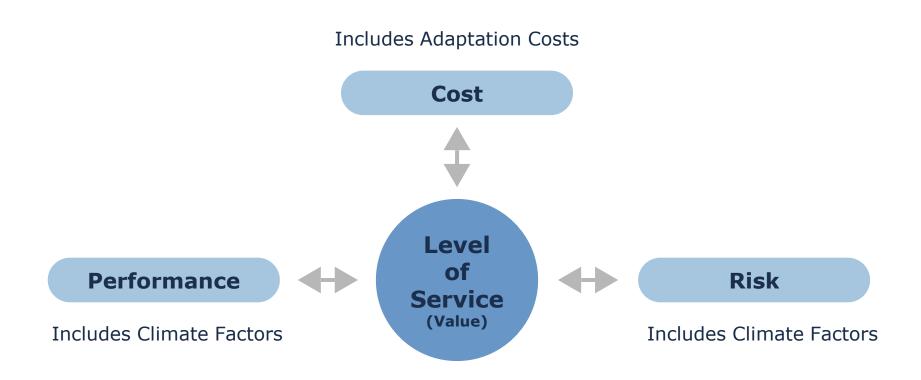
5	0 Assets -	0	0 Assets -	0	0 Assets -	0	0 Assets -	0	0 Assets	0
4	\$0.00 0 Assets - \$0.00	0	\$0.00 1 Assets 98.50 m \$65,699,50	0	\$0.00 0 Assets - \$0.00	0	\$0.00 0 Assets - \$0.00	0	\$0.00 1 Assets 348.50 m \$232,449,50	0
3	10 Assets 1,729.00 m \$1,153,243.00	0	13 Assets 4,307.00 m \$2,872,769.00	0	31 Assets 5,928.00 m \$3,953,976.00	0	0 Assets - \$0.00	0	4 Assets 721.50 m \$481,240,50	•
2	69 Assets 10,548.50 m \$7,035,849.50	0	35 Assets 6,092.00 m \$4,063,364.00	0	147 Assets 24,421.50 m \$16,289,140.50	0	0 Assets - \$0.00	0	64 Assets 11,986.20 m \$7,994,795.40	0
1	0 Assets - \$0.00	0	0 Assets - \$0.00	0	0 Assets - \$0.00	0	0 Assets - \$0.00	0	0 Assets - \$0.00	0
	1		2		3		4		5	

Consequence.

Probability

Life Cycle Management Framework

Climate Adaptation Considerations


AM – Life Cycle Activity Models - (Total Cost of Ownership)

Due to Climate Variability and Extreme Events:

- The estimated useful life span of assets may need to be reduced
- The interval between treatments may have to change
- The types of materials used in treatments may change
- New technologies may need to be introduced
- Some assets will need premature replacement and upgrading

All of the above will effect the Life Cycle Model & Total Cost of Ownership

Establishing Levels of Service

Measuring Levels of Service

- Centralized performance measurement program
- Develop a framework for tracking and evaluating levels of service
- Start with high-level service indicators (Cost, Performance, Risk)
 - Work towards technical levels of service

	Cost	Performance	Risk	
Asset Class	Annual Asset Class Reinvestment Rate	Condition	Risk	Level of Service Trend
Road Network	Annual Asset Class Reinvestment Rate 5.00% 4.00% 3.00% 2.21% 2.00% 1.00% Current Reinvestment Rate Current Reinvestment Rate	Very Good 21% 17% Good Fair Poor Very Poor	Very High 2% High 6% Moderate 36% Low 43%	➡

Execute

- Financial Strategy:
 - Replacement Cost Quantification
 - Full Life Cycle Cost of Ownership
 - Approved Short- and Long-Term Budgets
 - Defined Levels of Service
- Asset Management Plan
- Continuously, through the AM Program

Benefits of an Asset Management Program

(including climate considerations)

V - ensures assets provide Value to the organization & community

- **A** provides **A**lignment (clear line of sight) & coordinated activities
- L ensures Leadership and commitment
- **U** ass**U**rance of program development and delivery
- **E** ensures an **E**ffective and **E**fficient Management program across the organization

Questions?

jmurray@psdcitywide.com info@psdcitywide.com