

e NAIT Program

newables – a Shifting radigm

ivers of the Shift

chnologies

onomic Questions

AIT's Alternative Energy Program

rgy Efficiency in the Built Environment

9/3D CAD, advanced construction eating/Cooling loads ound & Air source heat pumps generation, Fuel Cells

ewable Power

lar, Wind, Hydro, Storage design stem Assembly & Commissioning ergy & Financial Modeling brization & Feasibility

AIT's Alternative Energy Program

Sustainability in Business

- Electricity Policy & the Grid/2.0
- Project Management
- Energy Efficiency/Energy Manage
- Life Cycle Assessment

Biorefining(Biofuels, Biomass,

- Renewable Liquid Fuel production
- Bio-based Cogeneration
- Material Handling & Processing
- QA/QC methods

e NAIT Program

newables – a Shifting radigm

ivers of the Shift

chnologies

onomic Questions

Within an Order of Magnitude of Annual ssil Fuel Investments

include estimates for undisclosed deals. Includes corporate and government R&D, and spending for energy storage projects (not reported in quarterly statistics), as well as a BNEF estimate for large hydro

RENEWABLE ENERGY PROPORTION OF POWER GENERATION-INTERMITTENT ENERGY (WIND & SOLAR), 2014 (%)

Note: This only shows the combination of wind and solar energy generation. All numbers come from BNEF's New Energy Outlook 2015

Source: Bloomberg New Energy Finance

RENEWABLE ENERGY PROPORTION OF POWER GENERATION-INTERMITTENT ENERGY (WIND & SOLAR), 2040 (%)

Note: This only shows the combination of wind and solar energy generation. All numbers come from BNEF's New Energy Outlook 2015

Source: Bloomberg New Energy Finance

New US Electrical Capacity Additions

chnology Learning Curves

Cost Decline since 2009

Solar 53 – 7 Wind 66%

Record PPAs

Solar \$36/N Wind \$30/N

\$1/W 2017

Ontario

2014

GHG 15% below 1990 Eliminated Coal Solar from 33 to 1,71 10% distributed Wind 2,856 MW

New

GHG 37% below 1990 by 2030

2016

Capacity doubled ea ye for last three years 9.8 MW Solar PV total

2030

Eliminate Coal
30% Renewables
MCCAC (6-8 MW PV a
\$3.4b for large scale F

- 240 MW PV Sunco
- 68 MW PV EdF-EN
- 39 MW PV BluEar

Energy Efficiency Agenc

chnologies

lar PV (electric) t Zero buildings at Pumps

conomics

et Metering/Net Billing erformance-based savings centives

Solar Electric (PV)

- Generates DC electricity
- Inverters convert this to A
- AC is fed into the service p for self-consumption
- Excess electricity goes to t
 - completely legal
 - inverter anti-islanding fea
 - some financial compensa
- 95% of installations have no batteries

ound mounted acking rports

ush mounted wangled on flat roofs ilding Integrated (BIPV)

ound mounted acking rports

ush mounted

w angled on flat roofs ilding Integrated (BIPV)

ound mounted acking rports

w angled on flat roofs ilding Integrated (BIPV)

ound mounted acking rports

ush mounted w angled on flat roofs ilding Integrated (BIPV)

et Zero

nuch energy as it nsumes on an annual basis

Alberta's first commercial net-zero building

David Dodge, Green Energy

The Mosaic Centre for Conscious Community and Commerce

Solar + Geoexchange = net-zero for 30,000 sq. foot building

Affordable, sustainable, the future

David Dodge, Green Energy Futures

Ground Source Heat Pumps

- High first cost
- Coefficients of Performance
 High
- Proven performance in Alb climate
- Competing against all-time cost natural gas
 - commercial applications

Air Source Heat Pumps

- Lower first cost
- Coefficients of Performance
 Intermediate
- Unproven performance in Alberta climate
- Competing against all-time cost natural gas

chnologies

lar PV (electric) t Zero buildings at Pumps

conomics

et Metering/Net Billing erformance-based savings centives

Billing \$0.08/kWh Power High-voltage plant \$0.03/kWh Substation Substations \$0.02/kWh

Heritage Organization, 2015

Net Metering:

Building owner is paid retail rate for excess electricity

= \$0.13/kWh

T&D infrastructure is not supported

Self consumption

Net Billing:

Building owner is paid wholesale for excess

= \$0.08/kWh

Neighbour *still* pays for T&D (\$0.05/kWh)

Performance Based Savings

Various mechanisms exist by which long-term savings can be realized through energy efficiency and renewable generation

- Energy Savings Companies (ESCo)
 - Guaranteed Energy Savings Contracts
 - Shared Savings Contracts
- Self-funded Savings
 - U of A Envision (30,000 tonnes CO₂, \$3.8 m/y)
 - Emory University (\$1.5 m rolling projects)
 - Cape Breton U (\$17 m "Community" wind farm)

Energy Efficiency Agency

\$645 million in grants, loans, contributions & guarantees over 5 years

Energy Efficiency & Conservation

Community Energy Systems

2017 - \$45 million

2018 - \$90

2019 - \$165

2020 - \$170

2021 - \$175

Solar Jobs

