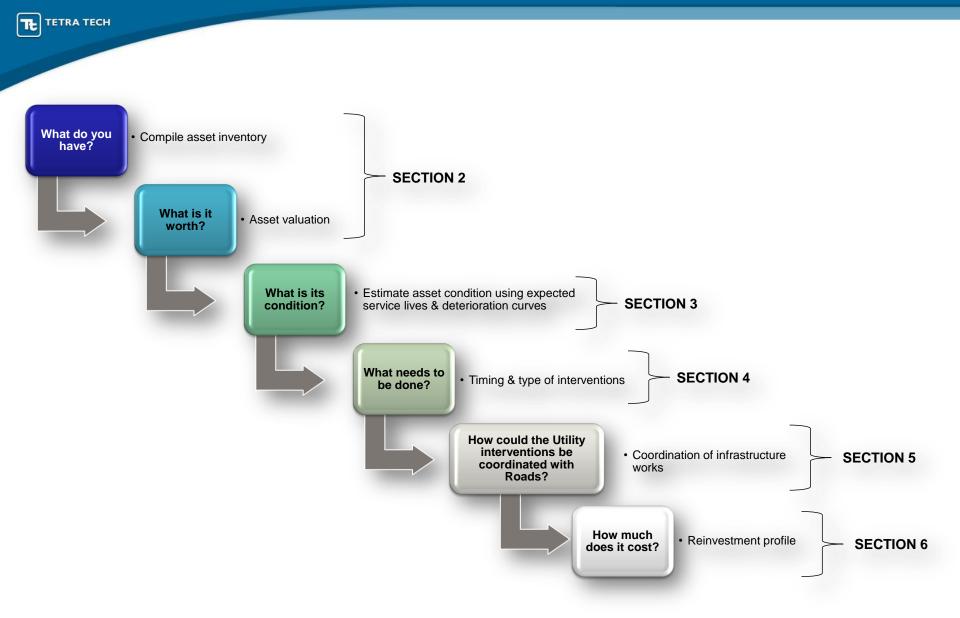
Ft Saskatchewan, AB

Multiple Asset Optimization

complex world | CLEAR SOLUTIONS"

Chris Lombard, P.Eng. MBA | Senior Asset Manager | chris.lombard@tetratech.com


June 11th, 2014

• Project Overview

TETRA TECH

- Methodology
- Results & Recommendations
- GIS & dTIMS Outputs Overview
- Questions & Discussion

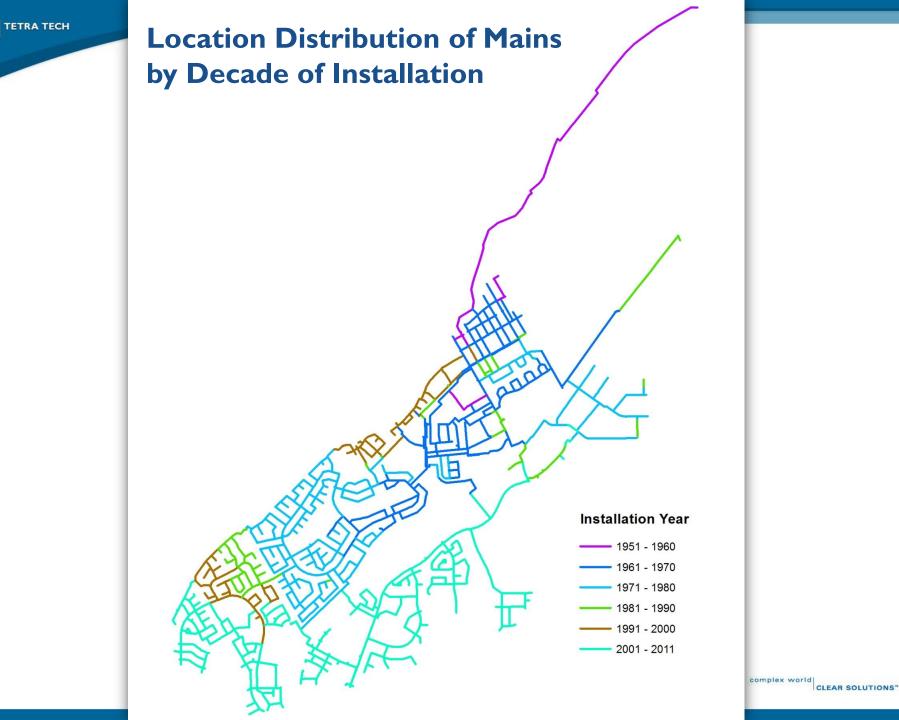
Key Steps in Methodology

Compilation of Asset Inventory: Initial Data Gaps

Initial Data Gaps (by total utility length, respectively):

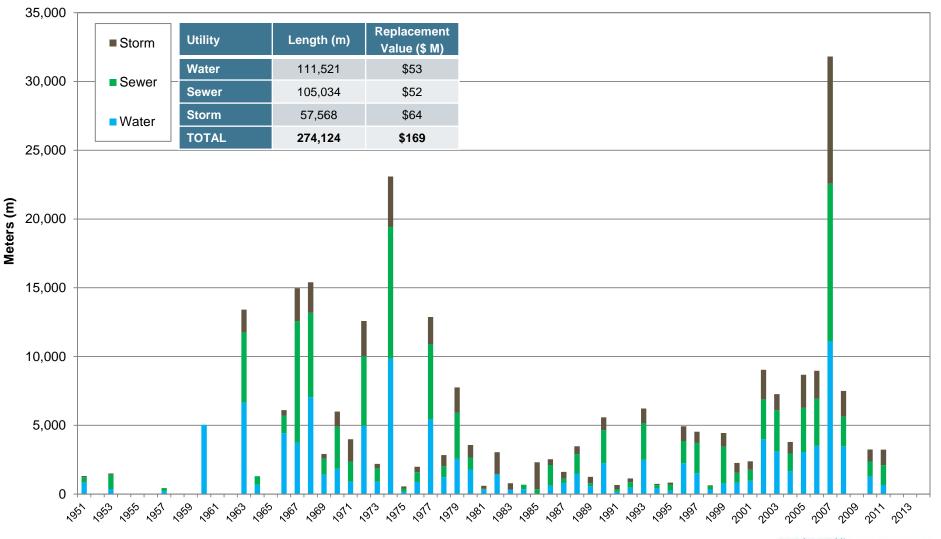
- Approximately 75% of the water mains did not have install dates, and 9% did not have diameter data
- Approximately 20% of the sanitary sewers did not have install dates, and 8% did not have diameter data
- Approximately 13% of the storm sewers by not have install dates, and 15% did not have diameter data

3/20/2014



File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help 🗋 😝 🖨 🐘 🖹 🏝 🗙 🗠 🕾 🚸 - 1:1,000 🔻 🛒 🖾 🗿 🖾 🍺 🐑 👷 🖕 ④ ④ 🖑 🎱 💥 🚼 💠 🕸 - 🔍 🐂 🕲 🖉 🖽 🏙 🗛 🗄 🖇 🗐 🖾 Table Of Content 1: I 😔 🗸 🗄 E S Layers Q:\Vancouver\Engineering\V133\Project\E3 Underground_Utilities_2013 B WaterPressureMain_line_Int E WaterPressureMain_line_Era E StormGravityMain_line_Int E StormGravityMain_line_Era □ SanitaryGravityMain_line_Inside B WaterPressureMain_line ⊟ □ StormGravityMain_line + ⊟ □ SanitaryGravityMain_line E FTSASK_RoadOutline FTSASK_RoadPoly_Inventory_Clip □ PMS_Inventory_2013 E FTSASK_RoadPoly □ PMS_Inventory_2013 🖃 🗹 routes_m1 Q:\Vancouver\Engineering\V133\Project\E3 Drtho2011010 South sid 111 49436.133 5950416.155 Meters 1:41 PM

Creation of Thiessen Polygons



Ft_Sask_Underground_Utilities - ArcMap - ArcView

TŁ

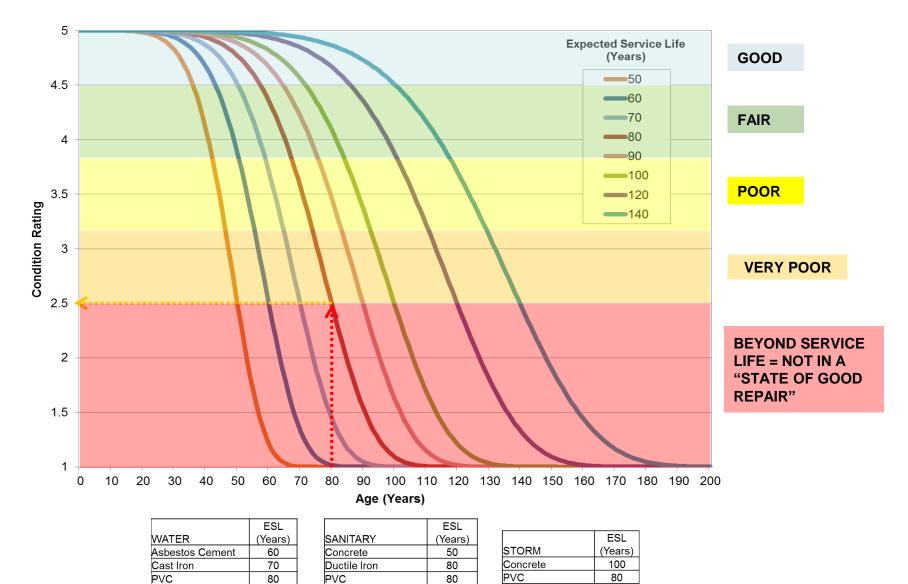
Annual Length of Underground Utility Mains Installed in City of Ft. Saskatchewan

TETRA TECH

complex world

Steel

Unknown

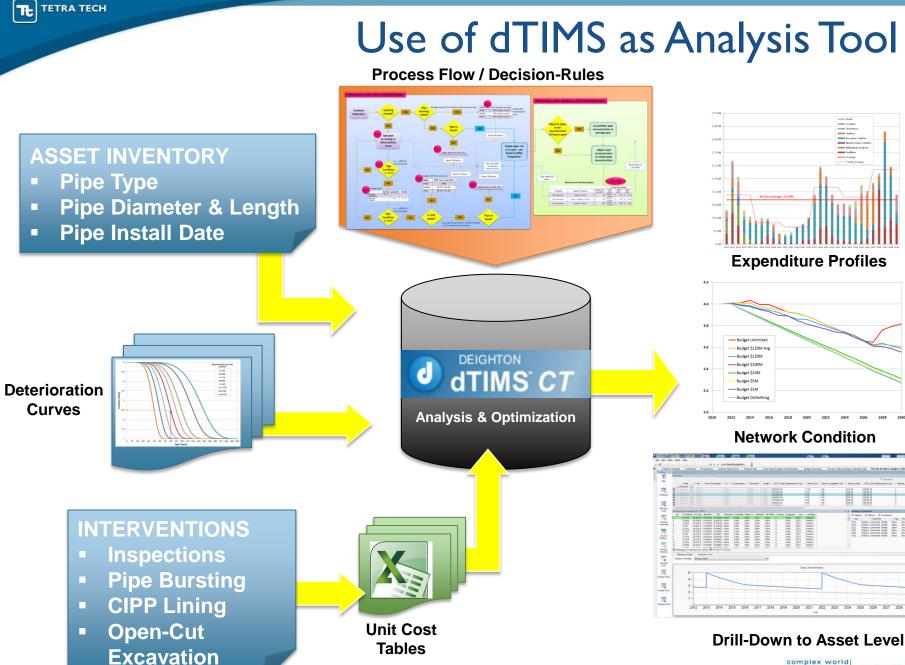

80

60

Vitrified Clay Tile

Unknown

Asset Condition – Use Weibull Deterioration Curves


50

80

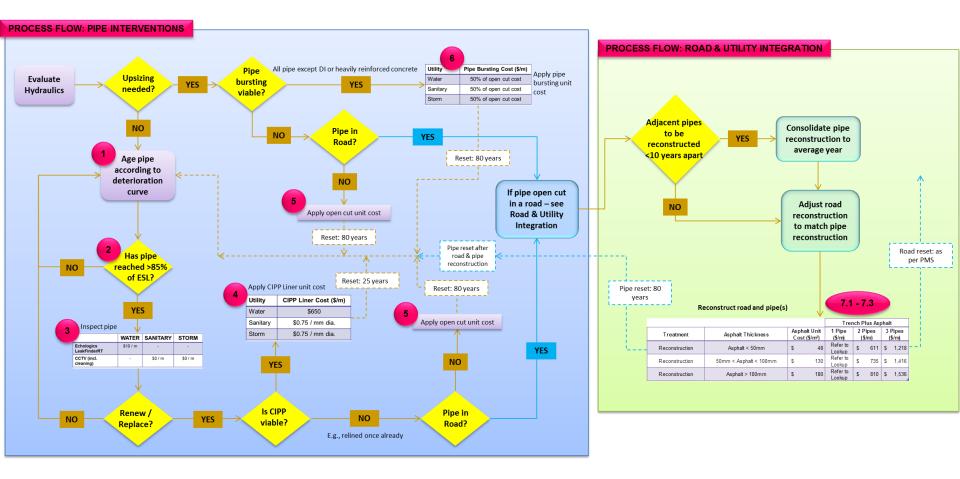
Unknown

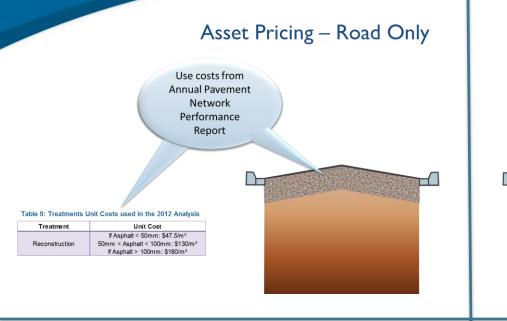
80

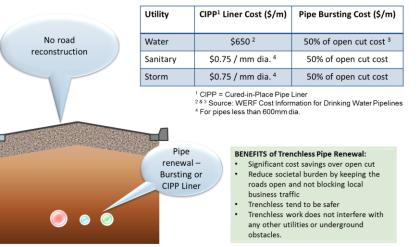
complex world CLEAR SOLUTIONS"

complex world

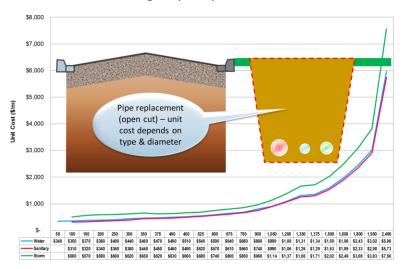
Interventions (Treatments)

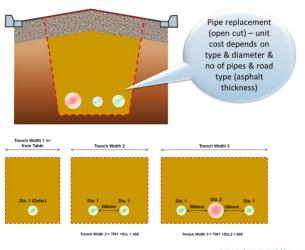

For the purposes of life cycle costing analysis (LCCA), treatments are grouped into inspection, renewal and replacement treatments:


- INSPECTIONS
 - Water: Leak detection
 - Sanitary & Storm: CCTV Inspection
- RENEWAL
 - CIPP Liners
 - Extends pipe life by 25 years
- REPLACEMENT
 - Pipe bursting if viable for up-sizing
 - Open cut replacement



Pipe Interventions (Treatments): Process Flow




Asset Pricing – Trenchless Pipe Renewal

Asset Pricing - Pipe Replacement Outside Road

Asset Pricing - Pipe Replacement in Road

CLEAR SOLUTIONS"

dTIMS Parameters Supplied by External Excel File **Easily Updateable** Weibull Curves

120 4.99999 4.99997 4.99999 4,99993 4,99998 4,99999 4,99986 4,99995 4,99998 4,99999 4,99974 4,99991 4,99997 4,99998 4,99999 4.99955 4.99985 4.99994 4.99997 4.99999 4.99999 4 99924 4 99974 4 9999 4 99995 4 99998 4 99999 4.99876 4.99959 4.99984 4.99993 4.99996 4.99998 4,99999 4.99807 4.99935 4.99974 4.99989 4.99994 4.99997 4.99999 4,99709 4,99902 4,99961 4,99983 4,99991 4,99995 4,99998 4,99999 4,99571 4,99856 4,99943 4,99974 4,99987 4,99993 4,99998 4,99999 4.99383 4.99793 4.99918 4.99963 4.99982 4.9999 4.99997 4.99999 4.9913 4.99709 4.99884 4.99948 4.99974 4.99986 4.99995 4.99998 4 98797 4 99597 4 9984 4 99928 4 99965 4 99981 4 99994 4 99998 4.98365 4.99452 4.99782 4.99902 4.99952 4.99974 4.99991 4.99997 4.9781 4.99265 4.99709 4.99869 4.99935 4.99966 4.99989 4,99995 4.97108 4.99029 4.99615 4.99827 4.99915 4.99955 4.99985 4.99994 4 96228 4 98733 4 99497 4 99774 4 99889 4 99941 4 9998 4 99992 4.95138 4.98365 4.99351 4.99709 4.99856 4.99924 4.99974 4.9999 4.93799 4.97912 4.99171 4.99628 4.99816 4.99902 4.99967 4.99987 4 92169 4 9736 4 98951 4 99529 4 99768 4 99876 4 99959 4 99984

Relining Costs

TABLE 4							
		c	IPP L	ine	Unit Cost (\$/I	n)	
Diameter_mm		Water			Sanitary		Storm
50	\$		50	\$	38	\$	38
100	\$		100	\$	75	\$	75
150	\$		150	\$	113	\$	113
200	\$		200	\$	150	\$	150
250	\$		250	\$	188	\$	188
300	\$		300	\$	225	\$	225
350	\$		350	\$	263	\$	263
375	\$		375	\$	281	\$	281
400	\$		400	\$	300	\$	300
425	\$		425	\$	319	\$	319
450	\$		450	\$	338	\$	338
500	\$		500	\$	375	\$	375
525	\$		525	\$	394	\$	394
600	\$		600	\$	450	\$	450
675	\$		675	\$	675	\$	675
750	\$		750	\$	750	\$	750
825	Ś		825	Ś	825	Ś	825

ESLs

WA	\TE	R		SANITA	RY	STORM			
MATERIAL		ESL (Years) 👻		MATERIAL	ESL (Years)	MATERIAL	ESL (Years)		
Asbestos Cemen	t		60	Concrete	50	Concrete	100		
Cast Iron			70	Ductile Iron	80	PVC	80		
PVC			80	PVC	80	Unknown	80		
Steel			80	Vitrified Clay Tile	50				
Unknown			60	Unknown	60				

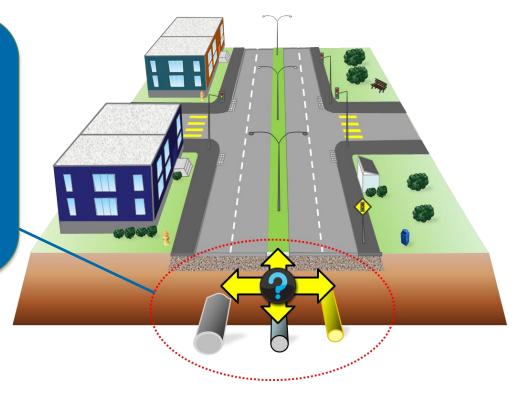
Inspection Costs

Inspection_Type	WATER (\$/m)	SANITARY (\$/m)	STORM (\$/m)
Echologics LeakFinderRT	\$10	-	-
CCTV (incl. cleaning)	-	\$3	\$3

Open Cut Cost

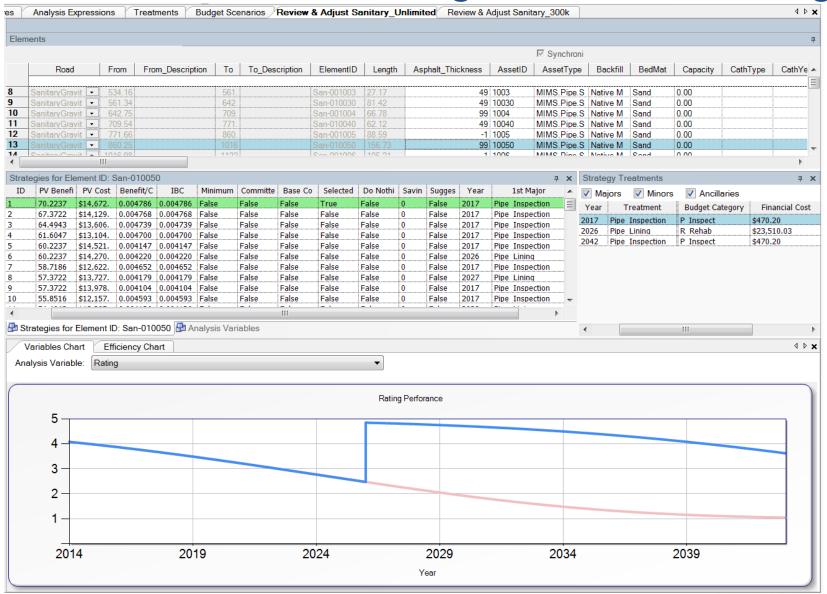
PIPE OPEN CUT COST (NO ROAD)

TABLE 5								
Diameter_mm	v	/ater	Sa	nitary	Storm			
50	\$	340		N/A		N/A		
100	\$	350	\$	310	\$	500		
150	\$	370	\$	320	\$	570		
200	\$	380	\$	340	\$	590		
250	\$	400	\$	360	\$	600		
300	\$	440	\$	380	\$	620		
350	\$	460	\$	440	\$	650		
375	\$	470	\$	450	\$	620		
400	\$	490	\$	460	\$	630		
425	\$	500	\$	475	\$	645		
450	\$	510	\$	490	\$	660		
500	\$	530	\$	510	\$	673		
525	\$	540	\$	520	\$	680		
600	\$	590	\$	570	\$	740		
675	\$	640	\$	610	\$	800		
750	\$	680	\$	660	\$	850		
825	\$	740	\$	700	\$	905		
900	\$	800	\$	740	\$	960		


Open Cut Cost Under Road

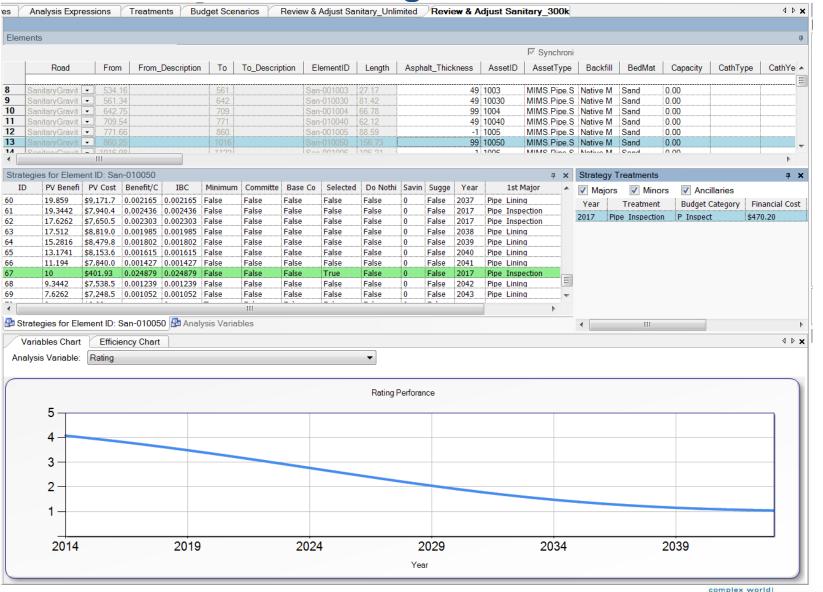
Diameter_mm	 ohalt < Omm	Asp	mm < bhalt < 0mm	 ohalt > IOmm	Diameter_mm	phalt < 0mm	As	mm < phalt < 10mm	 ohalt > Omm	Diameter_mm		ohalt < Omm	As	Imm < phalt < IOmm	 ohalt > IOmm
50	\$ 364	\$	405	\$ 430	50	N/A		N/A	N/A	50		N/A		N/A	N/A
100	\$ 374	\$	415	\$ 440	100	\$ 334	\$	375	\$ 400	100	\$	524	\$	565	\$ 590
150	\$ 418	\$	500	\$ 550	150	\$ 368	\$	450	\$ 500	150	\$	618	\$	700	\$ 750
200	\$ 428	\$	510	\$ 560	200	\$ 388	\$	470	\$ 520	200	\$	638	\$	720	\$ 770
250	\$ 448	\$	530	\$ 580	250	\$ 408	\$	490	\$ 540	250	\$	648	\$	730	\$ 780
300	\$ 488	\$	570	\$ 620	300	\$ 428	\$	510	\$ 560	300	\$	668	\$	750	\$ 800
350	\$ 508	\$	590	\$ 640	350	\$ 488	\$	570	\$ 620	350	Ś	698	\$	780	\$ 830
375	\$ 518	\$	600	\$ 650	375	\$ 498	\$	580	\$ 630	375	\$	668	\$	750	\$ 800
400	\$ 561	\$	685	\$ 760	400	\$ 531	\$	655	\$ 730	400	\$	701	\$	825	\$ 900
425	\$ 571	\$	695	\$ 770	425	\$ 546	\$	670	\$ 745	425	\$	716	\$	840	\$ 915
450	\$ 581	\$	705	\$ 780	450	\$ 561	\$	685	\$ 760	450	\$	731	\$	855	\$ 930
500	\$ 601	\$	725	\$ 800	500	\$ 581	\$	705	\$ 780	500	\$	745	\$	868	\$ 943
525	\$ 611	\$	735	\$ 810	525	\$ 591	\$	715	\$ 790	525	\$	751	\$	875	\$ 950
600	\$ 685	\$	850	\$ 950	600	\$ 665	\$	830	\$ 930	600	Ş	835	\$	1,000	\$ 1,100

complex world! CLEAR SOLUTIONS


Coordination of Infrastructure Works

- 1. STEP 1: Optimization of the timing of interventions between the water, sanitary sewer and storm sewer mains.
- 2. STEP 2: Optimization of the timing of interventions between the underground utilities and roads.

TETRA TECH


dTIMS Results – Strategies Unlimited Funding

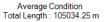
CLEAR SOLUTIONS"

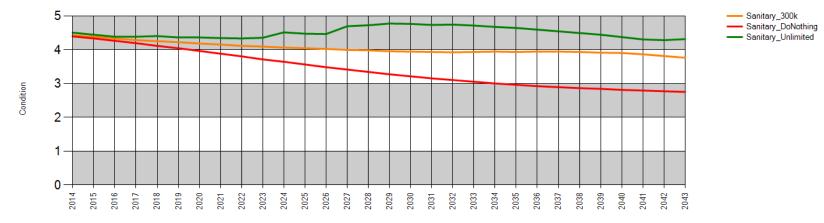
dTIMS Results – Strategies \$300k Annual Funding

TETRA TECH

CLEAR SOLUTIONS"

dTIMS Results – Average Condition Plot

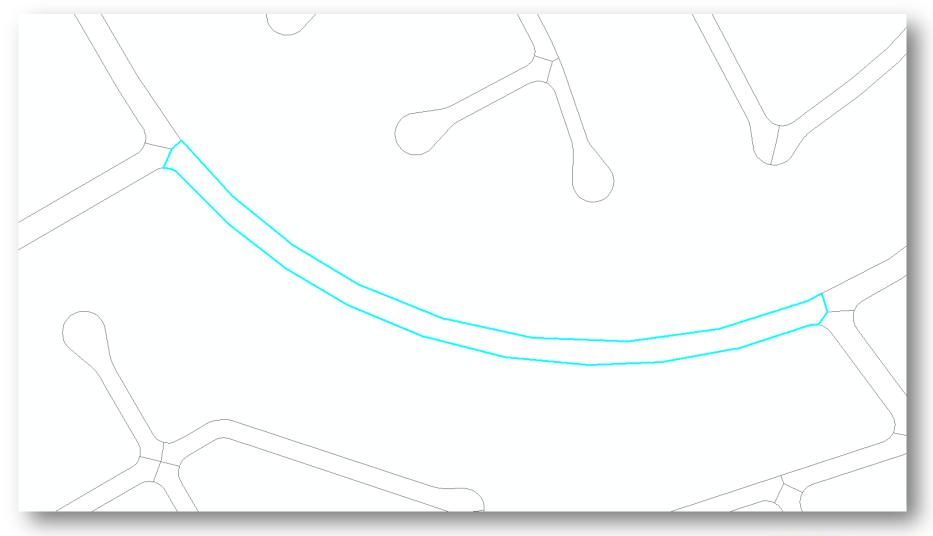

Perspectives Analysis Expressions Treat


TETRA TECH

Treatments Budget Scenarios

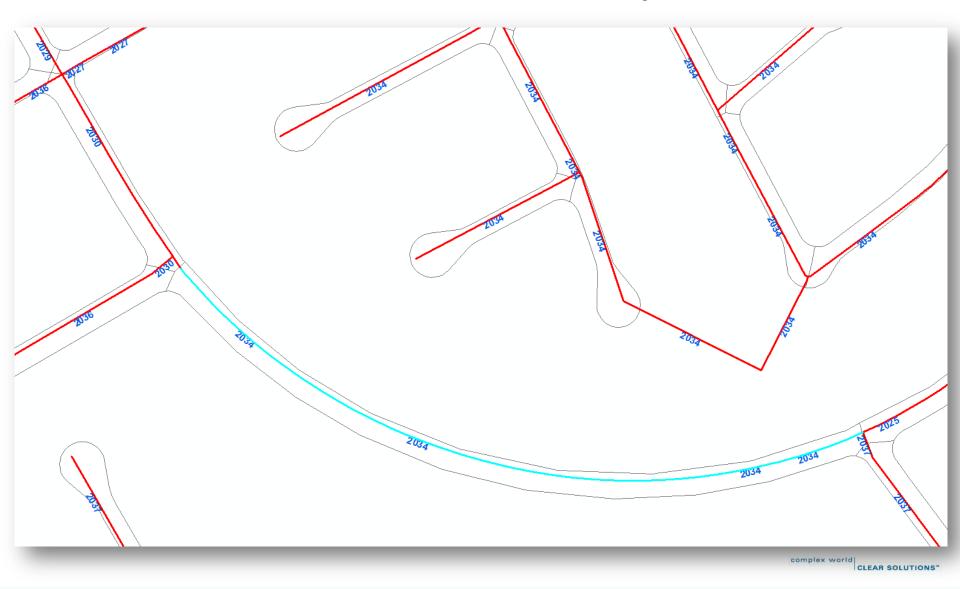
Review & Adjust Sanitary_Unlimited R

Review & Adjust Sanitary_300k / Average Condition



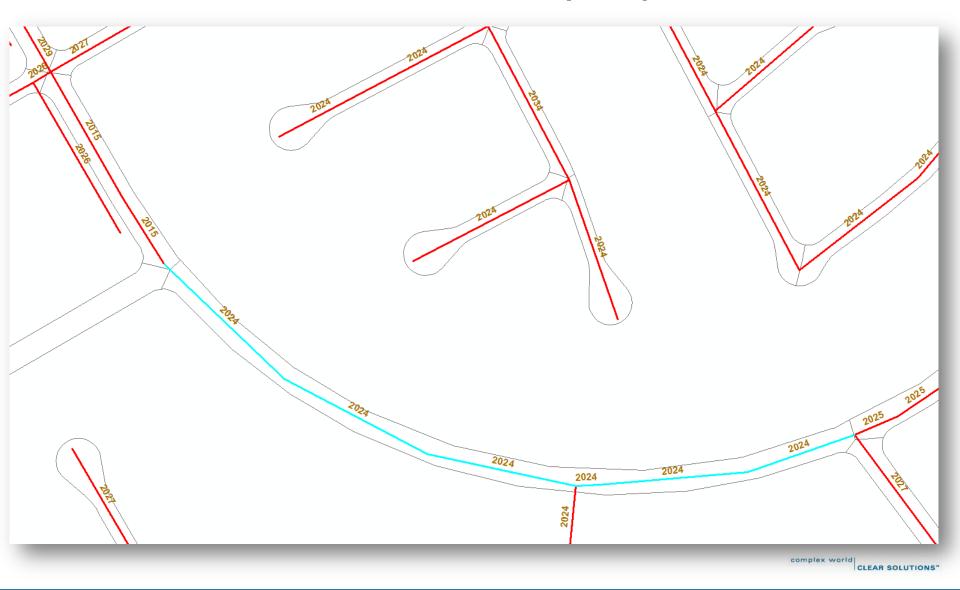
Years

	Year	Sanitary_300k	Sanitary_DoNothing	Sanitary_Unlimited
•	2014	4.42	4.39	4.5
	2015	4.38	4.33	4.44
	2016	4.33	4.26	4.38
	2017	4.28	4.19	4.38
	2018	4.25	4.11	4.4
	2019	4.22	4.04	4.36
	2020	4.18	3.96	4.36
	2021	4.15	3.88	4.34
	2022	4.11	3.8	4.33
	2023	4.09	3.71	4.35
	2024	4.06	3.64	4.51
	2025	4.04	3.56	4.47
	2026	4.02	3.48	4.46
	2027	3.99	3.41	4.69
	2028	3.98	3.34	4.72
	2029	3.95	3.27	4.77
	2030	3.94	3.21	4.76
	2031	3.93	3.15	4.73
	2032	3.92	3.1	4.74
	2033	3.93	3.05	4.71
	2034	3.94	3	4.67
	2035	3.93	2.96	4.64
	2036	3.94	2.92	4.59
	2037	3.94	2.89	4.54


dTIMS Results – Work Program Thiessen Polygon

TETRA TECH

TŁ

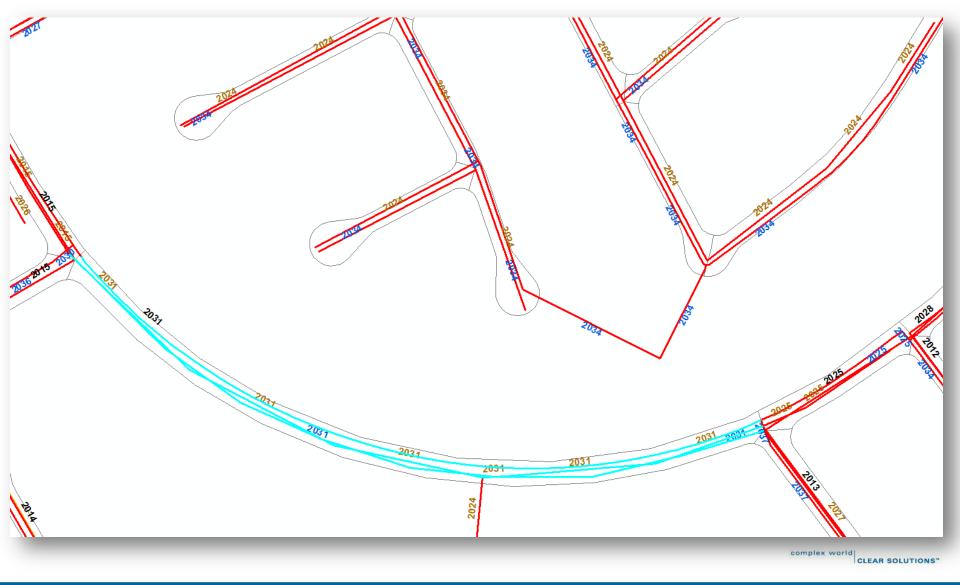

dTIMS Results – Work Program Uncoordinated Water Replacement Year

TETRA TECH

dTIMS Results – Work Program Uncoordinated Sanitary Replacement Year

TETRA TECH

dTIMS Results – Work Program Road Mill/Overlay Year



TETRA TECH

TŁ

dTIMS Results – Work Program Utility Work Coordinated with Road Work

TETRA TECH

\$ 0.0M

ŝ,

WATER Results

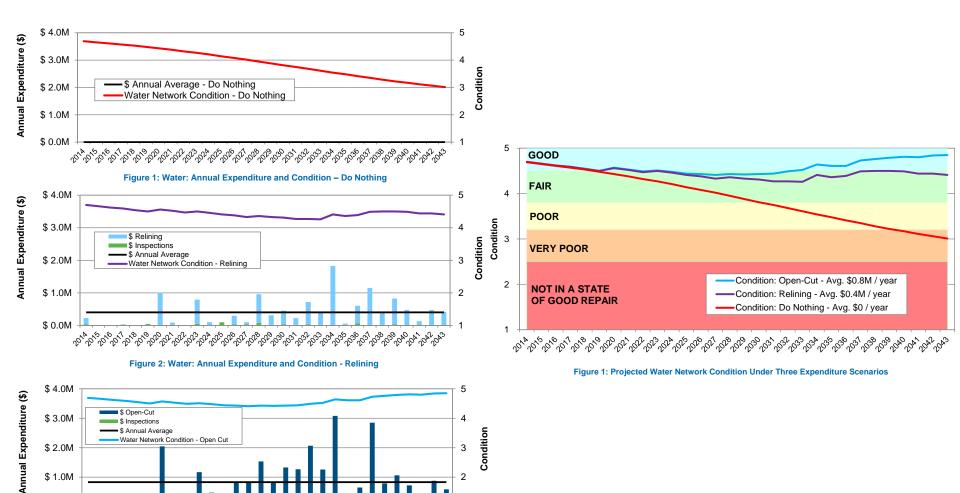
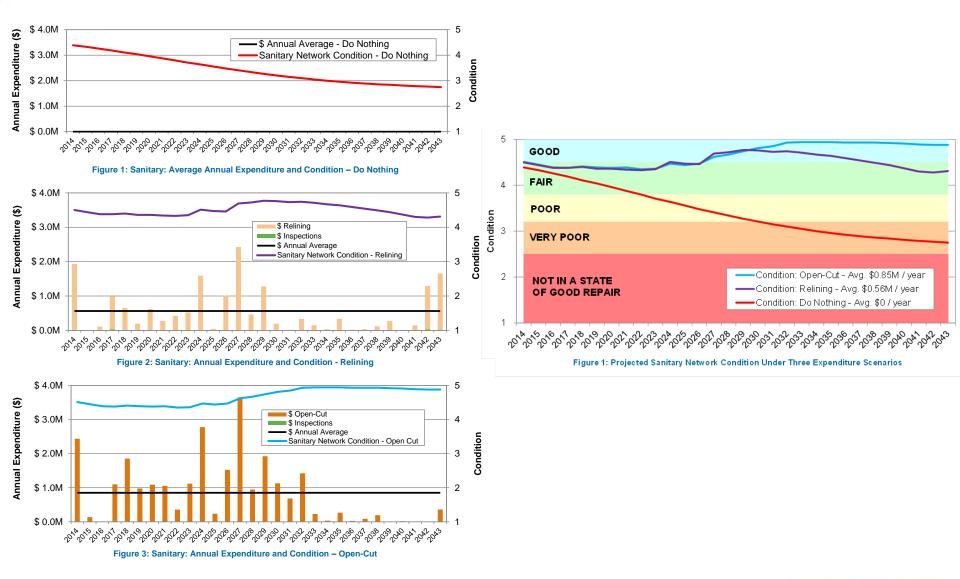
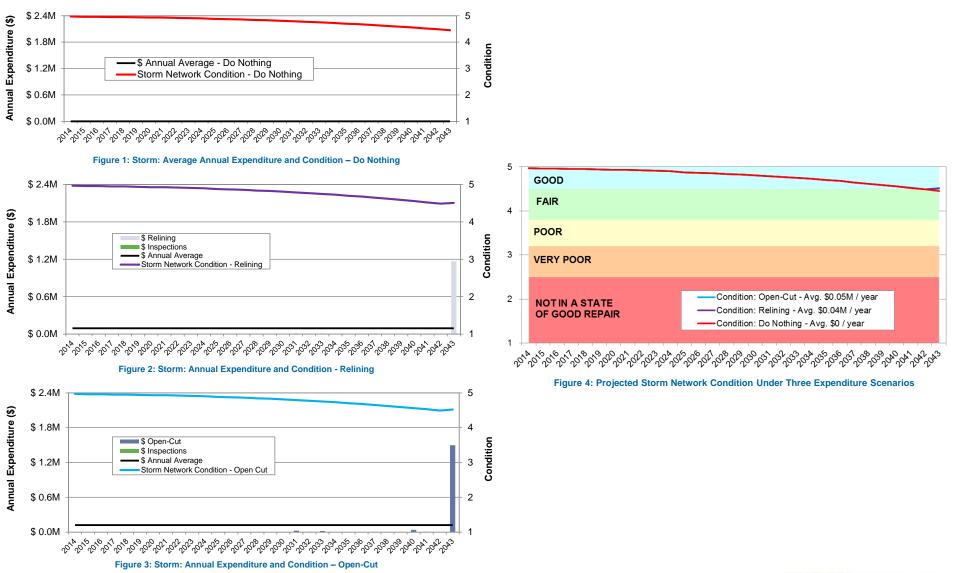
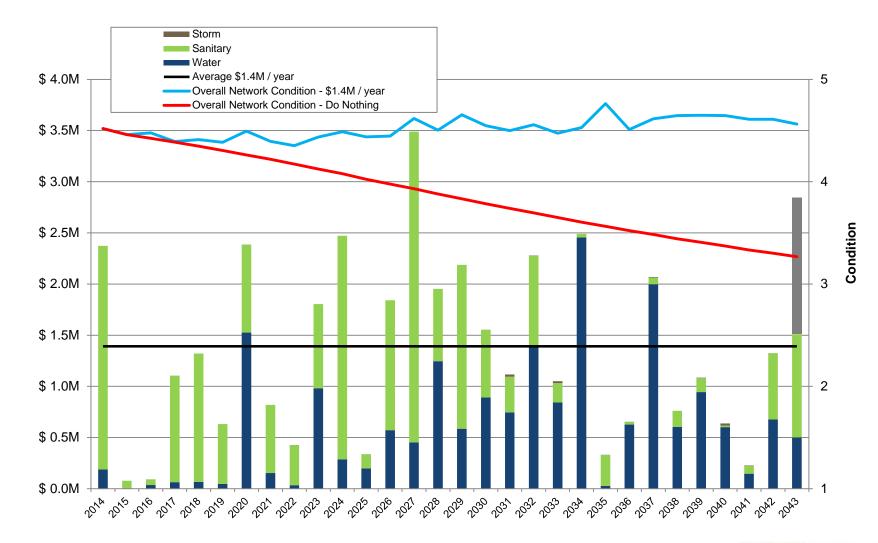



Figure 3: Water: Annual Expenditure and Condition – Open-Cut

ᢣᢐᠲᢌᠻᢦᡗ᠗ᠯ᠗ᠯ᠗ᢥᡐᡭᢦᡭᡇᡭᢦᡭᡇᡭᢦᡭᢑᡭᡇᡭᢦᡭᢑᡭᡊᡭᡡᡀᡭ᠕ᡭ᠕ᡭ᠕ᡭ᠕ᡭ᠕ᡭ᠕ᡭ᠕



SANITARY Results



STORM Results

Summary & Recommendations

Annual Expenditure (\$)

complex world

Summary & Recommendations (1 of 2)

- Budget for an average expenditure of \$1.4M per year for pipe renewal and replacement:
 - \$0.63M / year for water mains (45%)
 - \$0.71M / year for sanitary sewers (51%)
 - \$0.05M for storm sewers (4%)
- Inspection Budget of \$35,000 / year:
 - Confirm condition in advance of the date of intervention
 - Confirm whether renewal through relining is possible (generally the lower-cost option) or replacement through open-cut methods is advisable

Summary & Recommendations (2 of 2)

- Further refinement of the analysis should be undertaken by incorporating the hydraulic capacity of the water mains, sanitary sewer and storm sewers & potential upsizing needs
- Confirm & fill in remaining data gaps
- Coordinate open-cut interventions between water mains, sanitary and drainage sewers, and roadways (savings: 5% or \$85,000 per year over an un-coordinated approach)
- Incorporate the analysis of other utility assets not included e.g., pump stations, wells, treatment plants, service connections, etc.
- Perform regular updates to analysis as actual capital expenditure activities (on roads and utilities) are executed

Questions & Discussion

complex world | CLEAR SOLUTIONS"

Chris Lombard, P.Eng. MBA | Senior Asset Manager

chris.lombard@tetratech.com

604-314-6167